A novel p.Gly603Arg mutation in CACNA1F causes Åland island eye disease and incomplete congenital stationary night blindness phenotypes in a family
نویسندگان
چکیده
PURPOSE To report, for the first time, that X-linked incomplete congenital stationary night blindness (CSNB2A) and Åland island eye disease (AIED) phenotypes coexist in a molecularly confirmed pedigree and to present novel phenotypic characteristics of calcium channel alpha-1F subunit gene (CACNA1F)-related disease. METHODS Two affected subjects (the proband and his maternal grandfather) and an unaffected obligate carrier (the proband's mother) underwent detailed ophthalmological evaluation, fundus autofluorescence imaging, and spectral-domain optical coherence tomography. Goldmann visual field assessment and full-field electroretinogram (ERG) were performed in the two affected subjects, and multichannel flash visual evoked potential was performed on the proband. Scotopic 15 Hz flicker ERG series were performed in both affected subjects to evaluate the function of the slow and fast rod pathways. Haplotype analysis using polymorphic microsatellite markers flanking CACNA1F was performed in all three family members. The proband's DNA was sequenced for mutations in the coding sequence of CACNA1F and nyctalopin (NYX) genes. Segregation analysis was performed in the family. RESULTS Both affected subjects had symptoms of nonprogressive nyctalopia since childhood, while the proband also had photophobia. Both cases had a distance visual acuity of 20/50 or better in each eye, normal contrast sensitivity, and an incomplete type of Schubert-Bornschein ERGs. The proband also had high myopia, a mild red-green color deficit, hypopigmented fundus, and foveal hypoplasia with no evidence of chiasmal misrouting. Spectral-domain optical coherence tomography confirmed the presence of foveal hypoplasia in the proband. The clinical phenotype of the proband and his maternal grandfather fit the clinical description of AIED and CSNB2A, respectively. The fundus autofluorescence and the visual fields were normal in both cases; the scotopic 15 Hz flicker ERG demonstrated only fast rod pathway activity in both. Both affected cases shared the same haplotype across CACNA1F. The proband carried a novel hemizygous c.1807G>C mutation (p.G603R) in the CACNA1F gene. The change segregated with the disease phenotypes and was not identified in 360 control chromosomes. No mutations were identified in NYX. CONCLUSIONS This report of a missense mutation in CACNA1F causing AIED and CSNB2A phenotypes in a family confirms that both diseases are allelic and that other genetic or environmental modifiers influence the expression of CACNA1F. This is the first report to suggest that in CACNA1F-related disease, the rod system activity is predominantly from the fast rod pathways.
منابع مشابه
Clinical Characteristics, Mutation Spectrum, and Prevalence of Åland Eye Disease/Incomplete Congenital Stationary Night Blindness in Denmark
Purpose To assess clinical characteristics, foveal structure, mutation spectrum, and prevalence rate of Åland eye disease (AED)/incomplete congenital stationary night blindness (iCSNB). Methods A retrospective survey included individuals diagnosed with AED at a national low-vision center from 1980 to 2014. A subset of affected males underwent ophthalmologic examinations including psychophysic...
متن کاملA novel CACNA1F gene mutation causes Aland Island eye disease.
PURPOSE Aland Island eye disease (AIED), also known as Forsius-Eriksson syndrome, is an X-linked recessive retinal disease characterized by a combination of fundus hypopigmentation, decreased visual acuity, nystagmus, astigmatism, protan color vision defect, progressive myopia, and defective dark adaptation. Electroretinography reveals abnormalities in both photopic and scotopic functions. The ...
متن کاملMosaic synaptopathy and functional defects in Cav1.4 heterozygous mice and human carriers of CSNB2.
Mutations in CACNA1F encoding the α1-subunit of the retinal Cav1.4 L-type calcium channel have been linked to Cav1.4 channelopathies including incomplete congenital stationary night blindness type 2A (CSNB2), Åland Island eye disease (AIED) and cone-rod dystrophy type 3 (CORDX3). Since CACNA1F is located on the X chromosome, Cav1.4 channelopathies are typically affecting male patients via X-chr...
متن کاملRetinal and optic disc atrophy associated with a CACNA1F mutation in a Japanese family.
OBJECTIVE To describe retinal and optic disc atrophy and a progressive decrease of visual function in 2 Japanese brothers. Both had a mutation in the CACNA1F gene, the causative gene of incomplete congenital stationary night blindness (CSNB). METHODS We studied observational case reports and performed comprehensive ophthalmologic examinations including best-corrected visual acuity, biomicrosc...
متن کاملGenotype-phenotype correlation in British families with X linked congenital stationary night blindness.
AIM To correlate the phenotype of X linked congenital stationary night blindness (CSNBX) with genotype. METHODS 11 CSNB families were diagnosed with the X linked form of the disease by clinical evaluation and mutation detection in either the NYX or CACNA1F gene. Phenotype of the CSNBX patients was defined by clinical examination, psychophysical, and standardised electrophysiological testing. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 17 شماره
صفحات -
تاریخ انتشار 2011